必须从长期大势认识当前形势海皇科技股价,认清我国长期向好发展前景;2021年老板电器股价 尽管美联储暂停加息的信号越来越多,但对债市来说似乎还不够,...
2021-09-02 6850
# pylint: skip-fileimport randomimport cv2import mxnet as mximport numpy as npimport osfrom mxnet.io import DataIter, DataBatchclass FileIter(DataIter): #一般都是继承DataIter """FileIter object in fcn-xs example. Taking a file list file to get dataiter. in this example, we use the whole image training for fcn-xs, that is to say we do not need resize/crop the image to the same size, so the batch_size is set to 1 here Parameters ---------- root_dir : string the root dir of image/label lie in flist_name : string the list file of iamge and label, every line owns the form: index \t image_data_path \t image_label_path cut_off_size : int if the maximal size of one image is larger than cut_off_size, then it will crop the image with the minimal size of that image data_name : string the data name used in symbol data(default data name) label_name : string the label name used in symbol softmax_label(default label name) """ def __init__(self, root_dir, flist_name, rgb_mean=(117, 117, 117), data_name="data", label_name="softmax_label", p=None): super(FileIter, self).__init__() self.fac = p.fac #这里的P是自己定义的config self.root_dir = root_dir self.flist_name = os.path.join(self.root_dir, flist_name) self.mean = np.array(rgb_mean) # (R, G, B) self.data_name = data_name self.label_name = label_name self.batch_size = p.batch_size self.random_crop = p.random_crop self.random_flip = p.random_flip self.random_color = p.random_color self.random_scale = p.random_scale self.output_size = p.output_size self.color_aug_range = p.color_aug_range self.use_rnn = p.use_rnn self.num_hidden = p.num_hidden if self.use_rnn: self.init_h_name = 'init_h' self.init_h = mx.nd.zeros((self.batch_size, self.num_hidden)) self.cursor = -1 self.data = mx.nd.zeros((self.batch_size, 3, self.output_size[0], self.output_size[1])) self.label = mx.nd.zeros((self.batch_size, self.output_size[0] / self.fac, self.output_size[1] / self.fac)) self.data_list = [] self.label_list = [] self.order = [] self.dict = {} lines = file(self.flist_name).read().splitlines() cnt = 0 for line in lines: #读取lst厦门蓝帽子最新股价,为后面读取图片做好准备 _, data_img_name, label_img_name = line.strip('\n').split("\t") self.data_list.append(data_img_name) self.label_list.append(label_img_name) self.order.append(cnt) cnt += 1 self.num_data = cnt self._shuffle() def _shuffle(self): random.shuffle(self.order) def _read_img(self, img_name, label_name): # 这个是在服务器上跑的时候,因为数据集很小,而且经常被同事卡IO,所以我就把数据全部放进了内存 if os.path.join(self.root_dir, img_name) in self.dict: img = self.dict[os.path.join(self.root_dir, img_name)] else: img = cv2.imread(os.path.join(self.root_dir, img_name)) self.dict[os.path.join(self.root_dir, img_name)] = img if os.path.join(self.root_dir, label_name) in self.dict: label = self.dict[os.path.join(self.root_dir, label_name)] else: label = cv2.imread(os.path.join(self.root_dir, label_name),0) self.dict[os.path.join(self.root_dir, label_name)] = label # 下面是读取图片后的一系统预处理工作 if self.random_flip: flip = random.randint(0, 1) if flip == 1: img = cv2.flip(img, 1) label = cv2.flip(label, 1) # scale jittering scale = random.uniform(self.random_scale[0], self.random_scale[1]) new_width = int(img.shape[1] * scale) # 680 new_height = int(img.shape[0] * scale) # new_width * img.size[1] / img.size[0] img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_NEAREST) label = cv2.resize(label, (new_width, new_height), interpolation=cv2.INTER_NEAREST) #img = cv2.resize(img, (900,450), interpolation=cv2.INTER_NEAREST) #label = cv2.resize(label, (900, 450), interpolation=cv2.INTER_NEAREST) if self.random_crop: start_w = np.random.randint(0, img.shape[1] - self.output_size[1] + 1) start_h = np.random.randint(0, img.shape[0] - self.output_size[0] + 1) img = img[start_h : start_h + self.output_size[0], start_w : start_w + self.output_size[1], :] label = label[start_h : start_h + self.output_size[0], start_w : start_w + self.output_size[1]] if self.random_color: img = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) hue = random.uniform(-self.color_aug_range[0], self.color_aug_range[0]) sat = random.uniform(-self.color_aug_range[1], self.color_aug_range[1]) val = random.uniform(-self.color_aug_range[2], self.color_aug_range[2]) img = np.array(img, dtype=np.float32) img[..., 0] += hue img[..., 1] += sat img[..., 2] += val img[..., 0] = np.clip(img[..., 0], 0, 255) img[..., 1] = np.clip(img[..., 1], 0, 255) img[..., 2] = np.clip(img[..., 2], 0, 255) img = cv2.cvtColor(img.astype('uint8'), cv2.COLOR_HSV2BGR) is_rgb = True #cv2.imshow('main', img) #cv2.waitKey() #cv2.imshow('maain', label) #cv2.waitKey() img = np.array(img, dtype=np.float32) # (h, w, c) reshaped_mean = self.mean.reshape(1, 1, 3) img = img - reshaped_mean img[:, :, :] = img[:, :, [2, 1, 0]] img = img.transpose(2, 0, 1) # img = np.expand_dims(img, axis=0) # (1, c, h, w) label_zoomed = cv2.resize(label, None, fx = 1.0 / self.fac, fy = 1.0 / self.fac) label_zoomed = label_zoomed.astype('uint8') return (img, label_zoomed) @property def provide_data(self): """The name and shape of data provided by this iterator""" if self.use_rnn: return [(self.data_name, (self.batch_size, 3, self.output_size[0], self.output_size[1])), (self.init_h_name, (self.batch_size, self.num_hidden))] else: return [(self.data_name, (self.batch_size, 3, self.output_size[0], self.output_size[1]))] @property def provide_label(self): """The name and shape of label provided by this iterator""" return [(self.label_name, (self.batch_size, self.output_size[0] / self.fac, self.output_size[1] / self.fac))] def get_batch_size(self): return self.batch_size def reset(self): self.cursor = -self.batch_size self._shuffle() def iter_next(self): self.cursor += self.batch_size return self.cursor < self.num_data def _getpad(self): if self.cursor + self.batch_size > self.num_data: return self.cursor + self.batch_size - self.num_data else: return 0 def _getdata(self): """Load data from underlying arrays, internal use only""" assert(self.cursor < self.num_data), "DataIter needs reset." data = np.zeros((self.batch_size, 3, self.output_size[0], self.output_size[1])) label = np.zeros((self.batch_size, self.output_size[0] / self.fac, self.output_size[1] / self.fac)) if self.cursor + self.batch_size <= self.num_data: for i in range(self.batch_size): idx = self.order[self.cursor + i] data_, label_ = self._read_img(self.data_list[idx], self.label_list[idx]) data[i] = data_ label[i] = label_ else: for i in range(self.num_data - self.cursor): idx = self.order[self.cursor + i] data_, label_ = self._read_img(self.data_list[idx], self.label_list[idx]) data[i] = data_ label[i] = label_ pad = self.batch_size - self.num_data + self.cursor #for i in pad: for i in range(pad): idx = self.order[i] data_, label_ = self._read_img(self.data_list[idx], self.label_list[idx]) data[i + self.num_data - self.cursor] = data_ label[i + self.num_data - self.cursor] = label_ return mx.nd.array(data), mx.nd.array(label) def next(self): """return one dict which contains "data" and "label" """ if self.iter_next(): data, label = self._getdata() data = [data, self.init_h] if self.use_rnn else [data] label = [label] return DataBatch(data=data, label=label, pad=self._getpad(), index=None, provide_data=self.provide_data, provide_label=self.provide_label) else: raise StopIteration成交量放大 股价微跌
总结:实际上学一个框架的关键还是使用它厦门蓝帽子最新股价,要说诀窍的话也就是多看看源码和文档了,我写这些博客的目的,一是为了记录一些东西,二是让后来者少走一些弯路。所以有些东西不会说的很全。。
将mxnet/目录里找到mxnet/make/子目录厦门蓝帽子最新股价,把该目录下的config.mk复制到mxnet/目录,用文本编辑器打开,找到并修改以下两行:
1. 硬盘没有分区的情况下会出现A:GHOSTERR.TXT厦门蓝帽子最新股价。
每个参数的意义在代码内部都可以查到厦门蓝帽子最新股价,简单说一下这里用到的:--list=True说明这次的目的是make list,后面紧跟的是生成的list的名字的前缀,我这里是加了路径,然后是图片所在文件夹的路径,recursive是是否迭代的进入文件夹读取图片,--train-ratio则表示train和val在数据集中的比例。荣宝斋股价
USE_CUDA_PATH = /usr/local/cuda
我这个label是瞎填的厦门蓝帽子最新股价,所以都是0。另外最新的MXnet上面的im2rec是有问题的,它生成的list所有的index都是0,不过据说这个index没什么用.....但我还是改了一下。把yield生成器换成直接append即可。海康威视股价海康威视报价
import mxnet as mximport loggingimport numpy as np logger = logging.getLogger() logger.setLevel(logging.DEBUG)#暂时不需要管的logdef ConvFactory(data, num_filter, kernel, stride=(1,1), pad=(0, 0), act_type="relu"): conv = mx.symbol.Convolution(data=data, workspace=256, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad) return conv #我把这个删除到只有一个卷积的操作def DownsampleFactory(data, ch_3x3): # conv 3x3 conv = ConvFactory(data=data, kernel=(3, 3), stride=(2, 2), num_filter=ch_3x3, pad=(1, 1)) # pool pool = mx.symbol.Pooling(data=data, kernel=(3, 3), stride=(2, 2), pool_type='max') # concat concat = mx.symbol.Concat(*[conv, pool]) return concatdef SimpleFactory(data, ch_1x1, ch_3x3): # 1x1 conv1x1 = ConvFactory(data=data, kernel=(1, 1), pad=(0, 0), num_filter=ch_1x1) # 3x3 conv3x3 = ConvFactory(data=data, kernel=(3, 3), pad=(1, 1), num_filter=ch_3x3) #concat concat = mx.symbol.Concat(*[conv1x1, conv3x3]) return concatif __name__ == "__main__": batch_size = 1 train_dataiter = mx.io.ImageRecordIter( shuffle=True, path_imgrec="/home/erya/dhc/result/try_train.rec", rand_crop=True, rand_mirror=True, data_shape=(3,28,28), batch_size=batch_size, preprocess_threads=1)#这里是使用我们之前的创造的数据,简单的说就是要自己写一个iter,然后把相应的参数填进去厦门蓝帽子最新股价。 test_dataiter = mx.io.ImageRecordIter( path_imgrec="/home/erya/dhc/result/try_val.rec", rand_crop=False, rand_mirror=False, data_shape=(3,28,28), batch_size=batch_size, round_batch=False, preprocess_threads=1)#同理 data = mx.symbol.Variable(name="data") conv1 = ConvFactory(data=data, kernel=(3,3), pad=(1,1), num_filter=96, act_type="relu") in3a = SimpleFactory(conv1, 32, 32) fc = mx.symbol.FullyConnected(data=in3a, num_hidden=10) softmax = mx.symbol.SoftmaxOutput(name='softmax',data=fc)#上面就是定义了一个巨巨巨简单的结构 # For demo purpose, this model only train 1 epoch # We will use the first GPU to do training num_epoch = 1 model = mx.model.FeedForward(ctx=mx.gpu(), symbol=softmax, num_epoch=num_epoch, learning_rate=0.05, momentum=0.9, wd=0.00001) #将整个model训练的架构定下来了,类似于caffe里面solver所做的事情。# we can add learning rate scheduler to the model# model = mx.model.FeedForward(ctx=mx.gpu(), symbol=softmax, num_epoch=num_epoch,# learning_rate=0.05, momentum=0.9, wd=0.00001,# lr_scheduler=mx.misc.FactorScheduler(2))model.fit(X=train_dataiter, eval_data=test_dataiter, eval_metric="accuracy", batch_end_callback=mx.callback.Speedometer(batch_size))#开跑数据。
上个周末的大盘波动,终于给这场比武分出了高下厦门蓝帽子最新股价。股市无神再次规避了风险,而叶荣添就没那么幸运。两人互察账户,差距一下就被拉大800万以上。股市无神在这次对决中,成为最大的赢家。
2.binded,在把data和label的shape传到Bind函数里并且执行之后,显存就分配好了,可以准备好计算能力厦门蓝帽子最新股价。厦门蓝帽子最新股价
相关文章
必须从长期大势认识当前形势海皇科技股价,认清我国长期向好发展前景;2021年老板电器股价 尽管美联储暂停加息的信号越来越多,但对债市来说似乎还不够,...
2021-09-02 6850
全国人大:正研究起草房地产税法相关草案1970年可口可乐股价 近期股价低于一元停牌算吗,上海阳光医药采购网也发布了关于“全面实施药品挂网公开议价采购...
2021-09-02 8270
再在E3处直接复制以下公式:文科园林的股价行情 3月3日下午开幕股票的内部收益率高说明股价低吗,3月13日上午闭幕。 09:00:30 你的...
2021-09-02 6505
这是健全国家领导体制的重要举措可转债转股价越高越好吗,保持了党的中央委员会最高领导职务、党和国家的55武装力量最高领导职务和国家最高领导职务 “三位一...
2021-09-02 5488
面对不确定因素,有政策空间,比如提高赤字率0.2个百分点,运用像存款准备金率、利率等工具华研国际股票股价。怎样就算股票股价 在商业上,吴晓波买房、买...
2021-09-02 7102
(300344) 太空智造:召开2019年度第1次临时股东大会分红之后股价会怎么变 榜单显示,全球共找到239位十亿美金地产富豪,中国以58%遥遥领...
2021-09-02 3453
3月7日讯今年我国将实施更大规模的减税和更明显的降费腾讯公司未来股价预期,对于具体将从哪些方面入手,核心内容又是什么?财政部负责人进行了解读。总是买股...
2021-09-02 6049
点评:净利润实现两位数增长格林美最高股价多少钱,主要得益于成本缩减。2018年双汇发展营业总成本429.6亿元,较2017年下降4.91%。剔除三费等...
2021-09-02 5713
发表评论